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I. Introduction

The development of positional number systems has a rich history. Knuth

[2, pp. 162-180] presents a recent survey noting significant contributicns

from established and acateur mathematicians. Although bases such as 60
and 12 were used in antiquity, most of the alternatives to standard decimal
representation are of rather recent vintage. Knuth attributes to Pascal

(ca.1660) the fact that any positive integer could serve as base..~ Positional

number systems with negative digits were introduced in the early 1800s and the
architecturally interesting pure balanced ternary system first appeared in an

article of Lalanne (3] in 1840.

/~«>_‘> ;
The use of a negative base did not appear until the 1950s when several authors

independently introduced the concept,{24v—p--171}.. Complement representation

also became much discussed in this periocd as an alternative to sign magnitude
for designing the arithmetic unit of a computer. - . The arithmetic of num-
bers represented in positional notation has a firm foundation ka—aerived from
the theory of polynomial arithmetic that readily allows these extensions to
negative bases and/or negative digit values, complement representation, and
digit values in excess of the base. Our primary concern in this paper is the

characterization and ccomputation of those integral valued base and digit set pairs

that provide complete and unique finite radix representation of the integers. -

7\

N

In section II we introduce the integer radix representation system PI[B,D] as
the set of radix polynomials in the integer valued base g with coefficients from
the finite set of allowed integer digit values D, where 0 ¢ D. Thus
m-1
1

P ¢ ?I[B.D] implies P = dm[8]m+d (b

s i .
g + do, where di €eD for O <cicm

It is stressed that @I[s,D] is a set of polynomial expressions, not real numbers,

to afford a proper trearment of redundant representation. The digit set D is

o ~ r




then defined to be basic for base 8 if the members of @I[E,D] are, through
evaluation, in one-to-one correspondence with the integers. For D to be a

basic digit set for base B8 we first show the necessity that D be a complete

residue system modulo |3|. and secondly the necessity that D contain no non-
zero multiples of §-1. When D is basic for base B8, it is noted that the
n-digit base B8 numbers with digits from D then evaluate to a set of integers
that must constitute a basic digit set for base Bn, hence, by the former state~
ment, be free of non-zero multiples of g"-~1. Our major result is then the
sufficiency of the above conditions stated as a fundamental characterization

theorem: D 1is a basic digit set for base B if and only if D 1is a complete

residue system modulo |8 with 0 ¢ D where the n-digit base § nucbers with

digits from D contain no non-zero multiples of gf-1 for any n > 1.

For the base B and digit set D which is a cowmplete residue systenm modulo IBI,

we discuss in section II1 a simple computational procedure for determining the radix
polynomial P € PIIB,D] of value i when such a P exists. Furthermore, we show
that the degree of such a P can grow at most logarithmically with i and lin-
early with the ratio of the maximum digit magnitude to the base. A simple compu-
tational procedure to confirm whether or not a given digit set D is basic for

base B relying on the computation of representations for a small set of integer

values is presented, yielding the result that the determination of whether or not

the digit set D 1is basic for base £ can be accomplished in

o(|8| + max{|d| | d € D}/|B|). The digital digraph is introduced to illustrate

the computational procedures of radix representation determination and basic digit set

confirmation.

Specific classes of basic digit sets are described in IV. For the base 8,
if the digit set D has no digit value with magnitude exceeding IBI-I, then
D is shown to be basic iff D 1is a complete residue system with ~1 and 1

in D for @ = |D|, orwith -1 or 1 in D for B = ~|D|. Thus there are
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ZISI“3 such basic digit sets for 8 > 3, and 3 x 2‘81-3 such basic digit
sets for B < -3. Results of de Bruijn on alternating digit binary repre-
sentation [1] effectively established the existence cof an infinite ciass of
basic digit sets for base 4 when the maximum digit magnitude is allowed to be
larger than the base. We describe an infinite class of basic digit sets for

every positive and negative base 2 for | 8] > 3.

Then in section V we consider the infinite precision radix representation system
P_[B,D] for bases B and digit sets D where the radix polynomial P is in

®_(8,0] if and only if

& m m~1 =] .
P=d [8] + dm_llﬁl e dIIB] +d. + d_I[B] $ vy B, 6D fordzwm

0 i
If D 1is a basic digit set for base B, then we show that every real number
x has a representation in QQ[B.D], although this representation may not be
unique. Regarding redundancy of infinite precision representation the following
is obtained. For the digit set D which is basic for base 8, 1let S be the
set of real numbers with redundant infinite precision representations. Then:
(i) S is at least countable and can be uncountable,
(ii) x € S can have more than two but at most a finite number of

representations in @_[B.D].

(iii) S can contain no lBl-ary number, i.e. no number x of the form

X = iBJ for any intergers i,j.




11. Radix Representation of the Integers

For a given integral base B8, we seek those sets D of integral valued digits
for which standard base 8 radix representation using digits from D provides
a unique representation for every integer. A brief review of radix polynomial

terminology from [4] is helpful.

Let Z be the integers. A polynomial over Z in the indeterminant x is a
formal expression

m- -
1 + + a,xta a; ¢ Z for 0 < i < m,

m >
(1Y P(x) a x + am-lk T 1 0’

where either (i) a # 0 and m is the degree of P(x), or (ii) oy - 0 for all
0 and P(x) = 0 is the zero polynomial which is taken to have degree
negative infinity. For radix representation, a base 8 1is a positive or
negative integer with lBl > 2, and a digit set DCZ is a finite set of

integers with 0 € D. A base B8 integer radix polynomial cver D is then

either the zero polynomial or a polynomial in & over D of degree m > 0,

1.8,

(2) P([B]) = 4 [8]" +d

n=1
-1 (8] oo dl[8] +d

0’ di €D for 0 <ic<m, dm ¥ 0.
Notationally, the brackets are maintained about the base in (2) to stress that

the radix polynomial is a formal expression even though the value of the base

may be expressly substituted. Hence, notationally,

2
4 x [10]°" + S x [10] + 7 ¢4 3 x [10]2 + 15 x [10] + 7 denotes non-identical
radix polynomials,

4 x 102 3% 10 = 7 = 3 =% 102 1S X JU 7 denotes equal real values.

The integer radix representation system OI[S,D] is the set of all base R integer

radix polynomials over the digit set D.

2
Thus, for example, 4 x [10]° + 5 x[10] + 9 is a base 10 integer radix polynomial

and is a member of @1[10.{0,1,2.3.4.5,6,7.8.9)]. the standard decimal integer radix

representation system. The base 3 integer radix polynomial [3]6—[3]3-(3]2+[3]+1




1S a4 member of the balanced ternary

PIL‘.L‘l,J.‘.").

The evaluation operator E: @_I[(8,D]

integer

« J maps radix polynomial

integer values. For a base 3§, the digit set D is
(1) complete for B if E: 91.5.01 * 2 is onto 2,
(11) non-redundant for 8 1i1f E rxis,ﬁl *» 2 is
f(iil) basic for B if § e _(8.,D] - 2 1s
Ja L ST RS [
The digit set -1,0,1} 18 complete but not basic for base 2,

standard digit set (0,1,2,...,8-1} 1s non-redundant but not
base 3 > I, since nO negative numbers are representable in the
system. The standard digit set {0,1,2,...,|8/-1} for the
base |8] < -2 and the digit set ({-1,0,1} for base

digit set and base paar

A complete residue system modulo u 1

S contains exactly one integer :3l

Theorem l: Let D be a basic digit

a complete residue system modulo the

Proof: Assume D 1is basic for 8.
m m=-1 ’

a (B8] + 4 (8] iy it O NE)
m m=-1 1

d | imod (8|, and D contains a ¢
\

Let 4’ d" mod (R| for some d°',d"
integer, so there exists P ¢ @®_I(8,

] .

P X [8] ¢« d4" and ' are both member

they must be i1dentical since D L8

wvid D 1s a complete residue system

s that we

S$ & set S € 2 with u = |5

& with s imod u for
4

set for the base 3. Then

absolute value, Bl ©OF

For O € 1 € 8=, therve

d v ' v

(8,0]
Q .
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Note that D = (-2 2 is a complete residue system modulo 3 which 1s
not basic for base 3, since .![3.1-1.0.2‘] contains only ¢ven valued

radix polynomials., A weaker converse is obtained.

2: Let § be a base and D a complete residue system modulo

with Q0 € D. Then D 1is a non-redundant digit set for base

Proof: Assume the distinct radix polynomials P,Q ¢ Orlﬁ.ﬁl have the
R -~

. e N e -
same value. For P = l d. (81", Q@ = Y a (8], where only a finite

1=0 1=0
number of d and ai are non=-zero, and dl,al s - let K = m\nix!d)
i

Then

L=k

. =R ¢
Maltiplying by 8 and considering residues modulo

dk : “k mod B}

But dk - dk' d\. Ak g which contradicts the assumption that

complete residue system modulo :sf Thus D 18 a non-redundant digit

set for . l

The study of basic digit sets thus reduces to the determination of those
complete residue systems which are complete digit sets. For the complete

residue system D modulo lDl. the residue of 1 in D is denoted by

14|D and defined uniquely by

Ii'D = i + x|D| for some X

|i|n ¢ D.
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For the base 3 and complete residue system D modulo !SJ,

the base B8 chop function ¢: 2 + Z is defined Ly

(4) Ril) = (i-ﬂilD)/S for 1 £ Z.

The n-place base B8 chop function 2" 2z -+ 2 is given for n > O by

QO(i) o= 1,
(5) n i
$ (1) = (¢ (1)) for n > 15

The chop function is defined on the integers, but its important implica-
tions for radix representation are stated in the following lemma which

is an immediate consequence of the definitions (4), (5).

Lemma 3: Let 8 be a base and D a digit set which is a complete

b a0 e s e i i

residue system modulo |8|. Let dm[B]m - d“_l[ﬁlm-l - ST dl[8]+do e ®[(8,D]
have value 1i. Then

=t 8% AT e ea B for DK < n,
(6) m m-1 ka1l k [ i

o™iy = o.
The operation of the chop function is illustrated for the balanced ternary

number 1I011I'1'3=518.

(518) = 518 ~SIg=1101111,
ol (518) = (518-(-1))/3 =173 =1101 1 T3
0 (518) = (173-(=1)/3 = 58 =110 1 i
3 (s18) = (58-1)/3 =« 198110 1,
o) (s18) = (19-1)/3 = 6=110,
: ° (518) = (6-0)/3 « JELT
¢ (518) = (2-(-1))/3 = 1=1,
7 (518) = (1-1)/3 = 0




Lemma 4: Let B8 be a base and D a complete residue system modulo |8

with 0 € D. Then for any i € Z either there is a minimum m such
n,. P

that ¢ (i) = 0 for n > m or there are minimal ¢t,p £ Z such that

2% (i) = ¢%*P(i) # o.

|

Proof: For |i| > max{|a] ] d € D}, 1it follows from (4) that [&(i)|<|i].
0 i A
The sequence of integers b (1), & (1), @2(1),... thus has at most a

finite number of distinct values in its terms, and the lemma follows. '

For the base 8 and complete residue system D modulo lBl with 0 € D,

the base B8 degree of 1 in D for any i € Z 1is denoted by deg(i) where

deg(i) = - ® if i=o0,
(7)  deg(i) = min{n]e"*1(i) = 0} if i # 0 and ¢"(i) = 0 for some m,
deg (i) = = otherwise.

Furthermore ¢ cycles for i with period p if i # 0 and

p = min{n!bn(i) =i,n > 1}. If & cycles for i with period p for

some i,p € 2, then & is cyclic, otherwise ¢ is acyclic.

Example 1:
a) 8= -3, D= (-1,0,91}, i = =12 b) 8=3,D=({-1,0,91}, i = -5
@1(-12) = $(-12) = (-12-0)/-3 = 4 ¢l(-5) = §(~5) = (-5-91)/3 = -32
9

$°(=12) = 9(4) = (4-91)/-3 = 29 bz(-S) = $(~32) = (=32-91)/3 = =41
03(-12) = $(29) = (29-(-1))/-3 = =10 @3(—5) = $(~41) = (-41-91) /3 = =44
04(-12) = $(-10) = (-10-(-1))/=3 =3 04(—5) = §(~44) = (-44-91)/3 = =45
05(-12) = $(3) = (3-0)/-3 = -1 @5(-5) = $(~45) = (-45-0)/3 = =15
06(-12) = §(=1) = (-1=(=1))/-3 =0 @6(-5) = $(~15) = (-15-0)/3 = -5

Thus deg(-~12) = 5, and the radix poly- Thus ¢ cycles for ~5 with period 6.

5 3
nomial =[=3] =[=3] =[~3]24a1[~3] of
PI[-3,{-1,0,91}] has value -12.




Theorem 5: For the base 8, let the digit set D be a complete
residue system modulo |8|, and let i € Z, i # 0. Then either

{ (i) deg(i) = n and

N———

(8) i= |¢"<i)uD g & “¢“'l(i)ﬂo B e l(i)ID + il
or
(ii) there are minimal t,p such that &°(i) = #°*P(i) # o,
and with j = @t(i),
9 =308%-1) = [P 8+ PP 8P Ll w o Tl ee 15l

Proof: Let i e Z, i # 0, so from (4)
i= o(i) B + “llD.
Applying the same formula to (i) yields
: 2 y
0(1) = 07(1) B + foriif,
so that by substitution

L 0hid) 85 # "¢(i)"D B + "ilD '

and continuing with substitutions of &°(i) = ®k+l(i)8+ﬂok(i)ﬂo,

| o) 1= el g™ le il 8% + ... + H¢%i)“D 8 +[i], for any n > o.

Thus if deg(i) = n, ¢n+l(i) = 0 and equation (8) for i is established.

If deg(i) # n for any finite n, then by Lemma 4 there exist minimal g
t,p such that @t(i) = 0t+p(i) # 0. Letting j = ¢t(i), application ]
of (10) to j vyields

-1 L.s :
N L a(C Pl M- I I3l -

j = oP(5) 8° + u¢p'l(j)lo

and since @p(j) = j, equation (9) follows.'
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From Theorems 1 and 5 and Lemmas 2 and 3 we obtain the following.
Corollary 5.1: D is a basic digit set for the base 8 iff D is a
complete residue system modulo |B8| with O ¢ D such that deg(i) is

finite for all non-zero i e %, ice. 1€ @ is acyelic.

When ¢ cycles for 1 with period p, then (9) may be applied
to each term Ok(i), 0 < k < p-1, of the cycle, and the following

is cbtained.

Corollary 5.2: For the base B8, let the digit set D be a complete
residue system modulo IB[. Suppose ¢ cycles for i€ 2, i # 0

with period p. Then

p-1 p=1
K ) ;
1y = ey = e (i 7/ 8-1).
k=0 k=0
For the base B , note that if D is a complete residue system modulo |8| with

k(B~1) € D for k ¥ 0, then ¢ cycles for -k with period 1, and D is

not a basic digit set for base 8. This yields a second fundamental

condition for the digit set D to be basic for base 8. f

Theorem 6: Let D be a basic digit set for base 8. Then D

contains no digit of value k(B-1) for any k # O.

For the digit set D, base B8, and n > 1, let the n-place digit set

D" be given by

- -2
a2 o = (ifi=a__ 8"} .

8 +d 8 * sav +d B4, 4 D for 0< 3§ <« n=l}.
1 0 3 - -

1




If D is a basic digit set for base bH, then by considering blocks of n term
length in a radix polynomial P ¢ 01[:.01. it is evident that D" is a basic

digit set for base 8" for every n > 1. Then the simple necessary conditions
of Theorem 1 and Theorem 6 must apply to every member Dn,ﬁn for n 2

of this family of basic digit set and base pairs. Our principal result is that

these conditions are also sufficient to verify that D 1is basic for B.

Theorem 7 (Characterization Theorem for Basic Digit Sets):

D 1s a basic digit set for base B iff D is a complete residue system modulo
IBI with 0 € D where the n-place digit set D" given by (12) contains no non-

zero multiple of 8"-1 for any n > 1.
Proof: If D 1is a basic digit set for base B8, then D" is basic for base g
for every n > 1 and the conditions follow from Theorem 1 and Theorem 6.

Conversely, for the base B8, suppose D 1is a complete residue system modulo IBI

with 0 € D where D" contains no non-zero multiple of Bn-l for any n > 1.

Then by Theorem 5, ¢ cannot cycle for any 1 # 0, and by Corollary Sl B ds

then basic for base 8.
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ITII. Complexity of Basic Digit Set Verification and Radix Conversion

The theoretical characterization of basic digit sets given by Theorem 7 does

not yield an efficient computational procedure for comfirming that a given

digit set D is basic for base 8. We now show that basic digit set veri-

fication can be reduced to determining that ¢ does not cycle for i for a
particular small interval of values of 1i.
Lemma 8: For the base R, let the digit set D be a complete residue system

modulo |8|. Let d . = min{d|d ¢ D} and d = max{d|d € D}. Then ¢ can cycle
min max

for 1 only for values of i in the interval

4 -dmin
() iR et w sy it 8 = |pf,
(13)
-d -d -d g-d .
(i1) mér@ max o4 . max2 min T °|D|-
g -1 g -1
Proof: Consider the positive base case, B = [p[. For i > -dmin/(ﬂ-l).

i-d
min i+(8-1)1
Ve vy

-1.
and for i > -dmax/(B-l).

i=d > -dmax-(e-l)dmax . B

¢ (1) 8 = (B~1)6 b1’

v

Similarly 1 < -dmax/(ﬁ—l) implies ¢(i) > 1, and { < -dmin/(b—l) implies

®(i) < -dmin/(a_l)' These inequalities imply that ¢ can cycle for i only if

—dmax/(ﬁ—l) SRS -dmin/(a-l) for 8 = |D|, which verifies the positive base con-

dition (13)(i) of the lemma.

Now consider the negative base case, 8B = -IDI. ® is acyclic iff D 1is basic for

g = -|D] iff the 2-place digit set D2 given by (12) is basic for 32, for which

the positive base condition applies. Since min{d]d € Dz} = d 3+d

8 and
max min

s
max{d|d ¢ D7)} = dmin8+dmnx’ condition (ii) follows from condition (i) applied to

»
the digit set D“ for base 82.
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Lemma 8 is sharp in that if 8 = |[D| and dmux = k(B-1) and/or if dmin = j(B8-1),
then ¢ cycles for -dmax/(ﬁ-l) and/or —dmin/(g—l), respectively. For g8 = —|D],
it d = ~-d = -k(B+1), then ¢ cycles for both -k and k, and if

max min

d. =ity 4
m

= 0, then ¢ cycles for -8 and -l.
max :

in

From lemma 8 it is possible to construct an efficient procedure to determine if

D 1is basic for 8.

Corollary 8.1: For the base B8, 1let the digit set D be a complete residue system

modulo |8|. Then D may be determined to be basic for B or not in at most

(max{d|d € D} -min{d|d € D})/(|8]-1) applications of @.

Proof: Recursively select an unevaluated 1 in the interval specified by (13)(i) for
8= |D| or (13)(i1) for B = -|D| and evaluate #5(1), k = 1,2,..., until @%(1)
yields zero, a repeat value Ok(i) = Oj(i) for j < k determining a cycle, or a

value known to lead to zero. This procedure methodically either determines a cycle

or proves ¢ to be acyclic by evaluating ¢ at most at every non-zero value of i

in the interval specified by (13)(i) or (13)(i1i). Since both intervals have

(max{d|d e D} -r in{d|d € D})/(|8|-1) non-zero integral values, the corollary is

obtained.

An appropriate structure for illustrating the computation of radix representation
and basic digit set verification is a labeled directed graph. For a base 8 and

digit set D which is a complete residue system modulo [B[, the digital digraph

is the directed graph with the integers as vertices where there is a directed edge

from i to ¢(i) with label Ii!D for every 1 ¢ 0.

Example 2:
a) For B8=3, D=(0,1,~-7}, Figure la shows a portion of the digital

digraph. The members of the interval (13)(i) are noted, as are the members




T
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(13) (1)

(18)

=) A

(13) (1) 5 (19)

a) 8=3,D={0,1,-7}

b) 8 =5, D= (0,1,-23,43,-1)

- = {0,1,-7}, and
£ 1: i f the digital digraph for a) B 3, D (0,1, .
s :‘;rceo:ss‘: D = (0.1.-23.63,-1}, {1lustrating the important inter-

vals characterized by formulas (13) (i), (18) and (19).

em— : w—




)5

of the subinterval (19) which is shown by lemma 13 of the next section
to contain at least one member of any cycle of §. The fact that all
vertices within the (13)(i) bound are conmnected to vertex O confirms
that D 1s basic for 3.

b) For 38 =5 and D = {0,1,-23,43,-1}, Figure 1lb shows the portion of the
digital digraph containing all vertices of the interval -10,-9,..., 5
indicated by (13)(i). Note that the members -2,-1,..., 5 indicated by

(18) intersect all cycles for ¢.

The digital digraph has indegree |6| and outdegree unity for every non-zero
vertex 1. The set of vertices at distance no greater than n from vertex 0
constitute the n-place digit set D" as defined by (12). Thus B - {0,1,-7,3,
4,-4,-21,-20,-28} for D = {C,1,-7} as seen in Figure la. Finally, the radix
representation of 1 in positional notation is derived from the digital digraph
by concatenating the edge labels on the path from 1 to 0 in right to left order,

3

e.g. =9 . = 1077003 =] x 35—7 x37=7 x32 from Figure la, and

10
1 x 52—23 from Figure 1b.

5 - 9] =
210 1,0,235

Radix conversion is the process of determining Pi € QIIS.DI of value 1

when such a Pi exists. If the digit set D 1is a complete residue system
modulo |B|, it is sufficient by Theorem 5 to apply ¢ recurs$ively deg(i)

+ 1 times to determine Pi € PIIB,D]. The following bound on deg (i) in

terms of 8 and D applies to all finite deg(i), and thus implicitly bounds

the complexity of determining if E’,1 exists.

Lemma 9: For the base B8, let the digit set D be a complete residue system

modulo |8]. If i # 0 and deg(i) is finite, then with A = max{|d|| d ¢ D},

loglil log A logli| , 2 4 i

log[B8] = 1ogf8]

(14) a5 deg (1) <

log| 8| 1al=1
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m-1 4 m : " . ”
| < Ill < |B| » recursive application of

Proof: For i # 0 with |8
(4) yields

/18] + ™ Lciy|/|8]

|~

o™ (b))

(15) R 11 Y e PR P o R PY P T

|~

a/(|8] =1) + 1.

It follows from (4) that |®(3)|< j-1 whenever |3j| > a/(|8|-1), and
[¢(3) < a/(|8]-1) whenever |j|< a4/|8|-D, so then [¢k(i)[i A/ (|8]-1)
for all k >m + 1. Thus the sequence 01(1), ¢2(i), ceny Ok(i), cos
must either reach zero or a repeat value for k <m + 1 + 2A/(|8]|-1),
so assuming deg (i) is finite,

; logli 24
deq(l)f_loge +m_—l = [

For |il < A, (14) holds, so assume |i| > A and choose n maximum so

e n-1 n-2
[i] > & (]8] + | 8| & ook ® A%

Then from (4),

[o(i)] > A(IB[n-z + |Bn-3| * ovs * 1),
o™ L(1)] > a. E
Hence deq(@n-l(i)) >1, so deg(i) > n. Furthermore since |i|i[B|n+lA,

it follows that n + 1 > (log|i|-logA)/1og|8|, completing the lemma.

Corollary 9:1: For the base 8, let D be a digit set which is a complete
residue system modulo |8|, and let i ¢ 2, i # 0. Then after at most
L}oq[i[/loglsl + 24 /(|8|=1) + 2 J iterative applications of ¢ to i

either the unique Pi E;QIIB,D] of value i is determined or the non-existance

of any P ¢ PIIB,D] of value 1 is confirmed. :

Proof: The result is immediate from Theorem 5 and Lemma 9.
Thus the determination of the particular radix polynomial for representing i ¢ 2

can be accomplished with complexity O(T%T * igq ; ), where A = max{|d| ' d ¢ D).
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IV. Classes of Basic Digit Sets

There are no basic digit sets for B8 = 2, D= {0,1} and D = {0,-1}

are the only basic digit sets for B = -2. A digit set D 1s termed normal
for base B8 if max{!di!d € D} < !Sl—l. The normal basic digit sets are

readily characterized.

Lemma 10: For the base B8, let the normal digit set D be a complete residue
system modulo |2|. Then D 1is basic for 8 {(ff

1y {(-1,3)chp for 8= |pn]
(16)

(i1) -1 €D or le D (or both) for 8 = -|D]|.
Proof: For any normal digit set D for base B8, it is sufficient by Lemma
3 simply to verify that there exist Pi € PHB.D] of value 1 for i = -1,0,1.
For B = !Dl, Theorem 6 requires B8-1 ¢ D, -8+1 ¢ D, so condition (i) is
necessary and sufficient. For B8 = -|D|, note that if neither -1 nor 1 were
in D, then &(-1) =1, (1) = -1, and ¢ «cylces for -1 and 1. If either
-1eD, 1 €D, or {-1,1}€D, then ¢ does not cycle for either -1 or 1,

verifying (ii).

If the digit set D is normal for base 8, then there are only two possible digit
values for each non-zero residue in choosing D to be a complete residue

system modulo |B|, and the following is immediate.

Corollary 10.1: For [8| > 3, there are :lﬁl‘

|8l-3

normal basic digit sets for the

positive base 3 > 3, and 3 x 2 normal basic digit sets for the negative

Results of de Bruijn on binary based "good pairs" in [1] effectively establish
that there are infinite classes of basic digit sets for base 4 when the digit
values are allowed to be larger than the base. The following theorem characterizes

an infinite class of basic digit sets for any base B8 > 3.




Theorem 1ll: For any n > 1, 8 > 3, the digit set

(17 D(B.n) = {0,1,2,...,8-3, B-2,(-8"+8-1)} 3

is basic for base B.

)

Proof: Every positive integer i <« 8 -1 is the value of a standard base 8
radix polynomial

o wad I d 81 N 4B + A
m 1 o

where 0 < dj < B-1 for 0< j <m and deq(Pi) =m < n-1. Replacing each

term dk[S)k above for which dk = B8-1 byl x [8]k+n + (~Bn+8-l) x lSlk,

we derive a radix polynomial P; having all digit values in D(8,n) where

deg(?;) <m+n < 2n-1 and P; also has value i for all 1 < i <€ 8 -1,
From Lemma 8 it follows that D(8,n) 1is basic for 8 for any 8 > 3 and

any n > l.l

® {0elseons

For any negative base B < -3 and standard digit set 8|-1},

Dy .|
8]
it is readily verified that there is a standard negative base radix polynomial

8| Feasals|

Pi € P(S'D‘B}l of value 1 with deq(?i) < 2k-1 whenever -2

le

for k > 1. Letting D* = {0,1,2,...,|8]-3,|8{-2, (-|8]""-|8|-1)}, then for

|2k-l <1< 2|Bl2k-2

any 1, -2|S , proceeding as in the proof of Theorem 1l

a radix polynomial P; ¢ ®(8,0*] of value 1 is then shown to exist, which
by Lemma 8, proves the following.
Theorem 12: For any B < =3, k > 1, the digit set
2k
o* = {0,1,2,...,|8|=3,|8]-2,(=|8] " +|8|-1}

is basic for base B.
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For the base 8 and digit set D, the interval specified by (13) must contain
all integers for which ¢ 1is cyclic. If D contains no non-zero multiples of
8-1, then any cycle for ¢ must have period at least two. This observation

may be exploited to yield a subinterval which must contain at least one element

for which ¢ cycles whenever ¢ 1is cyclic.

Lemma 13: Let the digit set D be a complete residue system modulo B8 = ID(: 3

without non-zero multiples of 3 -1l. Let £, = max{d|d ¢ D}, t, - max{d|d ¢ D,d#tl}.

and d e min{d|d € D}. Then D is basic for B8 iff there exists Pj 3 OI[B,D] !
i :

of value j for all

tl tz dmin
Ll gy T& S22 TR

Proof: Suppose ¢ cycles for 1 with period p. From Theorem 5,

-i(8%-1) =[oP H | 8Pt 4 0P 2P0 4 L. ot b g+ L4 .

1€ u»k(i)lo =t for 0<kgp-l, then -i(8°-1) =t;(8°-1)/(B-1) and ¢t

e % 1
is a non-zero multiple of B-1, a contradiction. Hence p > 2 and
"@k(i)'o N for some k. Then & cycles for j = ®k+l(i) and

08P s e P h e B P e L e
< c;(sp-l)/<s-1> + (tl—tz)(Bp-l-l)/(B-l)
so then
t2 t1~t2 tl t2

V=T EED T T E

and by Lemma 8, the proof is complete.'

In like manner one obtains the result of Lemma 13 with the interval specified

by (18) replaced by

max sl s2
- (—— o =),
Ll s R Ml 17 e R T
where s1 and 52 are the smallest and second smallest elements of D,

respectively, and dmax = max{dld ¢ p}.
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The determination that D is basic for 8 > 3 can be accomplished by showing
that there exists Pi € OI[S.DI of value 1 for all i in the interval
specified by (18) or (19). Lemma 13 is of greatest assistance when the interval
specified by (18) or (19) is a subset of D and D contains no non-zero

multiple of 8-1, for then D is immediately confirmed to be basic for

8 = |p|. +

Example 3:

For base 7, the digit set D = {0,1,9,52,-10,-2,-1} is a complete

residue system modulo 7. Lemma 8 would require computing
¢ for {-8,-7,-6,-5,-4,-3,-2,~1,0,1} to determine that D
is basic for 7. By Lemma 13, (18) yields {(-2,-1,0,1} €D, and

since D has no non-zero multiple of 6, D 1is basic for 7.

Lemma 13 may be utilized to derive numerous classes of basic digit sets.
The following corollary is stated without proof to indicate the nature of
the construction. A proof can be fashioned similar to the methodology of

the proof of Theorem 1ll.

Corollary 13.1: Let D be a basic digit set for base 8 > 4 with

4 =max{|d||d € D}, where j € D for all j such that |j]| < 1 + 4 /(3-1).

For a fixed 4' ¢ D, d' # 0, d' Z -1 mod(8-1), and any k > 3, let Sy

be the digit set formed from D by replacing d' with 4d' + Bk. Then Sk

is basic for B for all k > 3.

Example 4:
Let D = {0,1,2,3,14,25,26,-3,-2,-1} and B8 = 10. Then 1 + A/(8-1)

@1 + 26/(10-1) = 3 % . So from Corollary 13.1, {0,1,2,3,14,26, (10%+25)-3,-2,-1}

is basic for base 10 for any k > 3.




An interesting class of digit sets for base 3 are those of the fornm
Dk = {0,1,-6k-1}, From (19) it is observed that Dk is basic for base
3 iff there exists Pi 5 PI[S,D] of value { for 0 < i < k. Table
1 shows those Dk which are basic and those ¢ that are cyclic for
0 £ k <14, and no clearly identifiable pattern for basic Dk in

terms of k {s observable. Note that k = 0,1,4, and 13 yield

Dk which are basic for 3 by theorem 1ll.

k D, Basic for 3 Cycle for
0 | {0,1,-17 Yes
1 (0,1,-7} Yes
2 £0,.1,-13} No 2 —=>5 =2 =2
3 {0,1,-19} No 2 =>7 —=>»2
4 {0,1,-25} Yes
5 {0,1,-31} Yes
6 {0,1,-37} Yes
7 {0,1,-43} No 5 =>16 =5
8 {0,1,-49; No 2 =217 =22 =] =2
9 {0,1,-55} No 2 =219 56 =22
10 {0,1,-61} No 2 =21 =>7 —»2
11 (0,1,-67} No 8 =» 25 —» 8
12 {0,1,-73} Yes
13 (0,1,-79) Yes
14 | (0,1,-85} Yes
Table 1: Digit sets Dk = {0,1,-6k-1} for k =0,1,2,...,14, showing those
Dk that are basic for 3 and a cycle for ¢ when 0y is not basic.

LS




v Radix Representation of the Reals

For the

over D

(20)

hase & and digit set D , a finite precision base 8 radix polynomial

is either the zero polynomial or an extended polynomial expression over 2

in the constant 8,

P18)) = a8 + g1 (81! s+ L. v gpra)t,

where d, € DcZ for -=< L <4i<m<w, and dm $ 0, dl # 0. The radix

i

representation system ®(8,D] is the set of all such finite precision base 8

(21)

where d

indices

and (21)

For P

dy 4 0,

(22)

b,

D 1is given by the extended polynomial expression

P(I8]) = a 181" + 4 181™ 1 4 ... & dg + d_y8171 4 ..,

L € pDczZ for i ¢ m, and d:l #0 for m and infinitely many

{ <m. The infinite precision radix representation system P_IB.D]

set of all finite and infinite precision radix polynomials over D. From (2),

¢ (8,01 ¢ ®[8,0] c® _[8,0].

radix polynomials over D. An infinite precision base 3 radix polynomial over

is the

(20),

e _[3,0], P 4 0, deg(P) shall denote the maximum index m such that

with deg(0) = -=,

For any integer b 22, the b-ary numbers, Ab' are given by

Ay = (b |igezy .

note that Ab is a set of rationals that is dense in the reals.

,; Thus a b-ary number is an integer scaled up or down by a power of b . For any




o

Lemma 14: Let D be a basic digit set for base g . For any t ¢ A|B| there
is a unique P ¢ P(8,D) of valuet. Furthermore, for t % O this P, with a=max{dl|de D},
has log|t) 24
deg(P) ¢ + )
logl3| |[g]-1

Proof: Given t=iaj € AIB’ , there is an integer radix polynomial Q ePI[B,D]
of value i since D is basic for 8. Then Q x[B]J =P ¢ P(8,D] is a
finite precision radix pdynomial of value t =igJd , and utilizing rLemma 9 and

Theorem 5 for t # 0, noting |D| = |8],

dagioD = da(e) g otltl 28 g 5 Tl 28

" logls| |8l-1 logls| |8]-1
To show uniqueness let P,P' e ®[8,D] both have value t = iBj. For sufficiently
large k, Q = P x IS]k, Q' = P' x [B]k are both members of @I[B,D} of value

iej+k € Z. Hence Q=Q', so P=P'.

Any finite precision radix polynomial P e P[{8,D] clearly has a value in
AIBI » S0 the finite precision radix polynomialsg ®P[g,D] provide a unique

representation system for the |g|-ary numbers when D is basic for g .

Corollary 14.1: Let D be a basic digit set for base 8 . Then the evaluation

mapping on @[g,D] 1is a one-to-one correspondence of @[8,0] with A\Bl .

For t = i x3j € A3 " t/3 = i x3j'1 c A3 and there exists P ¢ P[(3,(-1,0,1}] of
value t/3 . Substituting the digits 3 and -3 for digits 1 and -1, respectivly,

in P, a finite precision radix polynomial P' is derived where
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P' ¢ #(3,(-3,0,3}] and P' has value t =1 x3) e Ay . Thus non-basic digit

sets can yield unigue representation systems for A|5| . With the restiction that
D contain no non-zero multiple of |D! , a suitable converse to corollary 14.1

is obtained.

Ltemma 15: Let the digit set D contain no non-zero multiples of the base g ,

and suppose the evaluation mapping on @(8,D] is a one-to-one correspondence

of @([8,0] with A|B . Then D 1is basic for 8.

Proof: If P ¢ 01[3.01 , then P must have an integral value. Alternativly

if P' e®([8,0] - @{(8,0] , then P' = dm[a]"' taeo t di[e]‘ where § < -1

and dj $ 0 . Hence the value of P' s ie! where i $ 0 mod|8| , so P' has
a non-integral value. Thus the evaluation mapping restricted to PI[B.D] must
give a one-to-one correspondence of PI[a.D] with the integers Z , so by defi-

nition D 1is basic for 8.

The finite precision radix representation systems are of considerable importance
for application in arithmetic computer architecture. The arithmetic

structure of ®[8,D] has been extensivly investigated in [ 4 ). Our remaining
interest in this paper is the correspondence between the infinite precision ra-
dix representation system @_[8,0] and the reals when D 1is basic for g . It

is first shown that @ _[8,0] is complete for the reals.

Theorem 16: Let D be a basic digit set for base 8 . Then the evaluation mapping

on @ _[8,D] {is onto the reals.




Proof: It must be shown that any real number x 1is the value of some

P e Pw[:.D] when D 1is basic for 2. For x ¢ Alﬁl’ the result follows from
renma 14, so let x ¢ A|5" For some n , !3!" <|x| < lBIn+1 , and since A!BI
is dense in the reals there exist t1 > t2 > «v. > X , Where ti € Alel and
18]" "ti,‘ !a["+l for i3] and lim t; = x . By remma 14 there exists

A

P4 e P[3,0]CceP_[8,D] of value t4 where

(23) deg(Pi)§]°g|tJl+ 2t +ien+ 28 + 2 for any 1‘;‘1.
log|8| |8|-1 |8|-1

Thus deg(P;) is bounded for i 3 1, so let m = max(deg(Pi)!i g 1.

; be m . [ w o am
Consider the coefficients of [g]" in Py,P,,... . Choose P "=d "[g]" so
that dm' agrees with an infinite subsequence of the Pi in term m . Recursivly

]“1 agree with

L L] m » m=-1 -
for 8 =m-1,m-2,... , let P 7 = d "[s]" + dp (8] 4 oo+ aple
an infinite subsequence (Pi'} of the Pi in terms § + 1 through m , and
choose Pl‘= P’:I + dl' [B]I so that d; agrees with an infinite subsequence

of the {Pi') in term § . For any fixed { <m, P; agrees with an infinite

subsequence of the P,i in all the leadingtermsfrom R to m , hence the
value of Pl. differs from the limiting value, x, of this infinite subsequence
of the Pi by no more than

" & |
L el |l SO %Ll ; -
8-

where 4 = max(ldlld e D).

. 5 ’ » L a m=1
Defining P = llf Py = d [8]7 +d, (8] +e..eP_[8,D],
it follows that P differs in value from Pl‘ by at most A!Bl'/(lel-l) y SO
the value of P® differs from x by no more than 1im ZAlBl‘/(IBI-l) = 0 , that
|

is, P has value x . Thus the evaluation.mapping on ®_[8,01 is onto the reals.’




P* ¢ e_[8,0] of value x ¢ Alﬁ| as constructed in the proof of theorem 16 has

sane non-zero diqit, so deg(P') has some finite value, and
deg(P®) ¢ m = max(deg(P,)|i 3 1). From (23) and the fact that (81" <[ty < 1 ks

for i 3z 1, along with pemma 14, the following is established.

Corollary 16.1: Let D be a basic digit set for base B. For any real x ,

there is some P ¢ @ _(8,0] of value x for which

loa|x{ , 2
log|s| |8]-1

deg(P) < * 1 &

In standard decimal positional notation note that 1.0 = ,9999... , and in balanced

ternary, where D = (-1,0,1} 1is basic for base 3,

1 3 ~bwpaSyog ) (3179 distinct radix polynomials,
i=1 J=1
(24)
1+ ; -1 x3'j RS e | x3°j = 112 equal real values.
jal j:l

Equation (24) demonstrates that @_[8,0] can yield redundant representations of
the same real number even though D 1is basic for g8 . It is now shown that

?_[3,0] is always redundant when D is basic for g . Note that the redundant

expressions just exhibited in standard decimal and balanced ternary both involve a

trailing infinite sequence of digits that are congruent modulc ls-ll. This ob-

servation leads to the following.
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Lenma 17: Let D he a basic digit set for base g£. Let d = j mod|g-1] ,
d* = j mod|p~l| for d,d' e¢D ,d%d" ', D¢ jelg]~). Then for any i,n ¢ Z,
the real number
x = i3" + (=) "
8-1

has redundant representations in Pm[e,D ].

Proof: Let x = ia" +(—i—)a",and d = k(3-1) + j e D. D 4is basic for B8,
g-1
so let P ¢ PIlB.D] have value 1i-k , and let

Q=P +dlel™ +dls)? + ... e @ _l2,0] .

So Q has the value

(i-k) + i %} =
g-1 g-1
Hence Qx=[g]" ¢ P_[8,0] has value x . Similarly for d' = k'( 8-1) + j ¢ D,
let P' ¢ @IIB.D] have value i-k' , and let Q' = P' + d'[s]'1+d'[B]'2+...cPwIB.D].
Then Q'=[8]" ¢ ®_[8,0] also has value x . Thus x is the value of at least

two distinct radix polynomials of @_(3,D) . |

Theorem 18: Let D be a basic digit set for the base g. Then the evaluation

mapping on @_[8,0] is not one-to-one into the reals, i.e. ®_(8,0] is redundant.

Proof: Let D be basic for g8 with 8 3 3 . Then D contains B distinct
integersat least two of which must be congruent modulo 8-1 . So by Lemmal?,

®_[8,0] 1is not one-to-one into the reals,

2
For D basic for 38 with B8 ¢ -3, D" must be basic for g? 2 9. By the
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” . .
previous argument @w(:z.b“ ] is not one-to-one into the reals, so then

®_[8,0] can not be one-to-one into the reals. |

Example 5. a) The digit set 0 = {0,1,9,52,-10,-2,-1} was shown in Example 3

to be basic for base 7 . Note that 52 = d4mod 6, -2 = 4mnod 6 , and

52 x 7" #32 g 8y,
1 6

n ™8

i

gei¥ 4 2 - m e 2a gy,
i=1 6
so at least two distinct members of @ _[7,{0,1,9,52,-10,-2,-1}] have the

common value 8 2/3 .

b) The negative decimal system has the digit set D10 = {0,1,2,3,4,5,6,7,8,9}
which is basic for base -10 . Note that no two digit values of D10 are congruent
modulo|-10-1] = 11 . However the distinct digit values 0x(-10)! + 9= (-10)% = 9
and 9x(-10)! + 0x(-10)% = -90 of 0,,° are both congruent to 9
modulol(-lO)z-ll = 99 , Utilizing positional notation and base -10 ,

(.090909...) 4 = 9/(100-1) = 17,1,
(1.909090...) ;o= 1-90/(100-1) = 11
so at least two members of P_[-IO.DIO] have value 1/11 .

c) In certain cases it is possible for at least three members of ®_[(8,0] to
have the same value. Let D = {0,1,7,23,-1} and B8 = 5. Now {0,-1}eD,

and since -1x5% +23 = -2, D is basic for base 5 by Lenma 13. Note that

-1 =7 =23mod 4, and utilizing positional notation to base 5, treating (23) as

a single digit of value 23 ,
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=20
(1.1 ... )g = 6-15-1) = 834,
(11.777 ...)g = #+2/5-1) = 52/, |
(0.(23)(23)(23)...); = 23/5-1) = 53/, .

Thus 53/4 has at least three representations in P_[S.{0,1.7.23.-1}] .

é) Tne previous examples and nemma 17 all illustrate recundant representations
for particular rational numbers, however, irrational numters can also have

redundant representations. Let D =(0,1,7,23,-1} and 38 = 5 as in Examples (c).

Let
= n
y= 1t (25)2 -l_+_1_.+_1.+_.l_.-q.'”.
n=0 26 98¢ 288  2¢H

and 2z = 114/24+24y , and note that y and 2z are both irrational numbers.

tilizing positional notation to base 5 ,

7114, 5, . 138 . 138, 14 138, 114, 14 14 138 14
Y = 2:2 ¢=3 2:4 255 255 257 258 2*9
z = (0.(23)(23)(23)(23)(23)(1)(23)(23)(23)(1)(23 )(T)(23)( 1)@3)(23)(23)() “.)
and

e o %% +2yn 44 42 42 ,18 .42 .18 18  + 18 42 18

26 252 263 254 265 ' 256 ' 257 " 3ee" 2<°
bR i o S e . iy
z = (11. 77 77 1(23) 77 1(23) T(zz) 1(23) 2 1(23)...) .

Thus the irrational z has at least two representations in @ _[(5,(0,1,7,23,-1}].
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Example 3 (d) is ingicative of a general construction procedure. If

Yo * L c:.‘./ZS1 where a = (ul.az....) is any non periodic sequence of 0's and
=1

1's , then 2z = 114/24 + 24y(! is an irrational that is the value of at least

two members of 0_[5,10.1,7.23.-1}] . Since there is an uncountable number of

such sequences a, this constructivly confirmms the following,

Lemma 19: There exist D,8 where D 1is a basic digit set for base g and

where there is an uncountable set of real numbers having redundant representations
in @_[8,0].

In Example 5 (c) the fact that three members of (0,1,7,23,-1} were congruent
modulo 4 allowed the construction of three distinct members of @ _(5,(0,1,7,23,-1}]
having the same real value. If the digit set D is basic for base g = |D| and

if D has n values that are in the same equivalence class modulo(g-1), then a
similar construction would exhibit n distinct radix polynomials of ®_(8,D]

having the same real value.

Now assume x is the value of at least 2+l?A/(|Bl-1” members of ®_[g,D] for
some digit set D which is basic for base g8 where 4 = max{ldﬂdc 0} . For
sufficiently large j ¢ Z , x89 will then be the value of at least 2+L2A7(]s|—lﬂ

members P ¢ P_[8,0] where for P = P1 + PF , with

m

-1 -2
Pp=d (8] " +d_ (8] "+ ...,
the radix integer portion P, of these 2+[2A/(l3[-lﬂ or more radix polynomials will

be distinct. Since D is basic for 8 , these radix integer portions Pl have

distinct integral values, so some two radix polynomials P',P" e®_[8,0] will have

T




=3 =

radix 1nteger portiong Pi and P{ whose values differ by at least 1+t2a/(h|-lﬁ even

thouch P' and P" have the common value x87 . But the radix fraction portions

P; and PF each have values bounded in absolute value by

sliol™ « 18 ¢ 3 -A—l- p

a contradiction to P' = Pi + P; and P" =‘P; + PF having the same real value

xej , proving the following.

Lemma 20: Let D be a basic digit set for base 8. Then any real number x

is the value of at most[ 24 | +1 radix polynomials of @ [8,D] .
8 -IJ i

In view of the extensive redundancy in ®_[8,0] indicated by Lemmasl7 and 19,
it is of interest to characterize sets of real numbers for which @_[3,D] yields
unique representations when 0 1is basic for base g . Importantly, it follows
from Lemma 20 that the value zero is still uniquely represented by the zero poly~

nomial.

Corollary 20.1: Let D be a basic digit set for base 8. Then the only member

of @ _[3,0] of value zero is the zero polynomial,

Proof: If zero were the value of some radix polynomial P ¢ @ [8,D] with

deg(P) = m , then P x[a]j would be a distinct radix polynomial of value zero
for each j ¢ Z, contradicting remma 20. So the zero polynomial is the only radix

polynomial of value zero. |

The uniqueness of the representation of zero will now be used to show that any
[8]-ary number has a unique representation in @ _(8,0] when D is basic for

base 8 . Note that this does not contradict the redundancy of the 8-ary




T —
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aumbers for 8 > 2 in 'P“|.-.10‘1,2.....:-1“]. since (0,1,2,...,8-1} is noct basic

for 6.

Corollary 20.2: Let D te a basic digit set for base 8 . Then al)l members of

A
&5

al have unique representations in P_[s.D] ;

Proof: Since the members of P [8,0] by evaluation are in one-to-one correspon-

dence with A, ,, it is only necessary to show that an infinite precision radix

3]

polynomial P ¢ @_[8,D]) -P[2,D) must have a value x ¢ A . Suppose on the

8]
contrary that P ¢ ®_[8,0]-#(8,0] has value igd ¢ A|8l' With Q = Px(g]™d :
let |

0y = dpt8d™ + dp 118" ¢ oL+ d) € P18,0]

Qp = d_y 0817 +d08172 4 ... € @_(8,0)-PL8,0)

where QI + QF = Q= Pn[s]'J ¢ ®_(8,0]-P(8,0] , and Q has value i e Z since
P has value 18j . Now Qx € PI[e.D] has an integral value, so then QF must
also have an integral value, say k ¢ Z . MNow R1 € Pr[s.D] of value -k exists

since D 1is basic for base 8, so then
R =Ry + Qe c® [8,01-P[8,0]

has value -k + k = 0 , in contradiction to corollary 20.1. Hence P c@.[B.D]4P[B.D]

must have value x ¢ AIB| “

In summary, when D s a basic digit set for base g,

(a) the integer radix representation system Pl(s.Dl is complete and

non-redundant for the integers Z ,




(b)

(c)

(1]

(2]

(3]

(4]

33

the finite precision radix representation system ®[g8,D] 1is complete and

non-redundant for the |2!-ary numbers AIBI = (ile!qli.J ¥,

the infinite precision radix representaion system ®_(8,0] is complete
for the reals and redundant for a set S of reals disjoint from AIBI s
where S 1is at least countable and in some cases uncountable, and where
each member of S may be the value of strictly more than two but never

more than [2 max([dlld € DL/(|3I-1U +1 members of @ _(8,0].
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